3.1: Near the point A, outside the small sphere the electric field is the superposition of E and the field of a small electric dipole:

$$
\begin{gathered}
E_{\text {out }}=E-\frac{1}{4 \pi \varepsilon_{0}} \frac{\vec{p}}{R^{3}}=E-\frac{1}{4 \pi \varepsilon_{0}} \frac{\vec{P} V}{R^{3}}=E-\frac{1}{4 \pi \varepsilon_{0}} \frac{\varepsilon_{0}\left(\varepsilon_{\mathrm{r}}-1\right) E_{\text {in }} \frac{4 \pi}{3} R^{3}}{R^{3}}= \\
=E-\frac{\left(\varepsilon_{\mathrm{r}}-1\right) E_{\text {in }}}{3}
\end{gathered}
$$

This field should be equal to the homogenous field $E_{\text {in }}$ inside the sphere:

$$
E_{\text {out }}=E_{\text {in }}=E-\frac{\left(\varepsilon_{\mathrm{r}}-1\right) E_{\mathrm{in}}}{3} \rightarrow E_{\mathrm{in}}=\frac{3}{\varepsilon_{\mathrm{r}}+2} E .
$$

Let us insert this into the expression of the dipole momentum:

$$
\begin{gathered}
p=P \cdot V=\left[\varepsilon_{0}\left(\varepsilon_{\mathrm{r}}-1\right) E_{\mathrm{in}}\right] \cdot\left(\frac{4 \pi}{3} R^{3}\right)=\varepsilon_{0}\left(\varepsilon_{\mathrm{r}}-1\right) \cdot \frac{3}{\varepsilon_{\mathrm{r}}+2} E \cdot \frac{4 \pi}{3} R^{3} \\
=\frac{4 \pi \varepsilon_{0}\left(\varepsilon_{\mathrm{r}}-1\right) R^{3}}{\varepsilon_{\mathrm{r}}+2} E .
\end{gathered}
$$

It yields

$$
\alpha=\frac{4 \pi \varepsilon_{0}\left(\varepsilon_{\mathrm{r}}-1\right) R^{3}}{\varepsilon_{\mathrm{r}}+2}
$$

3.2: The relationship between force and potential energy: $\vec{F}=-\operatorname{grad} U$. It means that

$$
\begin{aligned}
\vec{F}_{x}=-\frac{\delta}{\delta x}(U) & =-\frac{\delta}{\delta x}\left(-\frac{1}{2} \alpha E^{2}\right)=\frac{\alpha}{2} \frac{\delta}{\delta x}\left(E_{x}^{2}+E_{y}^{2}+E_{y}^{2}\right) \\
& =\alpha E_{x} \frac{\partial E_{x}}{\partial x}+\alpha E_{y} \frac{\partial E_{y}}{\partial x}+\alpha E_{z} \frac{\partial E_{z}}{\partial x}=p_{x} \frac{\partial E_{x}}{\partial x}+p_{y} \frac{\partial E_{y}}{\partial x}+p_{z} \frac{\partial E_{z}}{\partial x} .
\end{aligned}
$$

3.3: The intensity can be described with the Poynting vector:

$$
\bar{I}=I(x, y, z)=\overline{\mid \vec{S}}\left|=\overline{\left\lvert\, \vec{E} \times \frac{1}{\mu_{0}} \vec{B}\right.}\right|=\frac{1}{\mu_{0} c} \overline{|\vec{E}|^{2}}=\varepsilon_{0} c \overline{|\vec{E}|^{2}}=\frac{1}{2} \varepsilon_{0} c[E(x, y, z)]^{2}
$$

3.4: Let us use equation (2):

$$
\begin{gathered}
\vec{F}=\langle\vec{F}(t)\rangle=\langle(\vec{p}(t) \cdot \operatorname{grad}) \vec{E}(t)\rangle=\langle(\alpha \vec{E}(t) \cdot \operatorname{grad}) \vec{E}(t)\rangle= \\
=\frac{\alpha}{2}\left\langle\operatorname{grad} \vec{E}^{2}(\mathrm{t})\right\rangle=\frac{\alpha}{2} \operatorname{grad}\left\langle\vec{E}^{2}(\mathrm{t})\right\rangle=\frac{\alpha}{2} \operatorname{grad} \frac{E_{\max }^{2}}{2}=\frac{\alpha}{2 \varepsilon_{0} c} \operatorname{grad} I .
\end{gathered}
$$

It means that

$$
\gamma=\frac{\alpha}{2 \varepsilon_{0} c} .
$$

3.5:

$$
F_{y}=\gamma \frac{\mathrm{d} I}{\mathrm{~d} y}=-\frac{\alpha I_{0}}{\varepsilon_{0} c b^{2}} y=m \ddot{y}
$$

It means that it is a simple harmonic motion with the amplitude d and with angular frequency

$$
\omega=\sqrt{\frac{\alpha I_{0}}{\varepsilon_{0} c b^{2} m}} .
$$

3.6:

$$
F^{\mathrm{rad}}=\frac{P^{\mathrm{rad}}}{c}=\frac{\mu_{0} \omega^{4}}{12 \pi c^{2}} \alpha^{2} E^{2}=\frac{\mu_{0} \omega^{4} \alpha^{2}}{12 \pi c^{2}} \frac{2 I}{\varepsilon_{0} c}=\frac{\omega^{4} \alpha^{2} I}{6 \pi \varepsilon_{0}^{2} c^{5}} .
$$

3.7: The condition of equilibrium is

$$
F^{\mathrm{rad}}+\gamma \frac{\mathrm{d} I}{\mathrm{~d} x}=0,
$$

where

$$
F^{\mathrm{rad}}=\frac{\omega^{4} \alpha^{2}}{6 \pi \varepsilon_{0}^{2} c^{5}} I_{0}\left(1-\frac{\xi^{2}}{a^{2}}\right) \quad \text { and } \quad \gamma \frac{\mathrm{d} I}{\mathrm{~d} x}=-\frac{\alpha}{\varepsilon_{0} c} I_{0} \frac{\xi}{a^{2}} .
$$

This is a quadratic equation for ξ :

$$
\frac{\omega^{4} \alpha}{6 \pi \varepsilon_{0} c^{4}}\left(a^{2}-\xi^{2}\right)-\xi=0
$$

The fraction in the equation has a dimension of $1 / \mathrm{m}$, so let us denote it as $1 / x_{0}$:

$$
x_{0}=\frac{6 \pi \varepsilon_{0} c^{4}}{\omega^{4} \alpha}=\frac{6 \pi \varepsilon_{0} c^{4}}{\omega^{4}} \frac{\varepsilon_{\mathrm{r}}+2}{4 \pi \varepsilon_{0}\left(\varepsilon_{\mathrm{r}}-1\right) R^{3}}=\frac{3\left(\varepsilon_{\mathrm{r}}+2\right) c^{4}}{2\left(\varepsilon_{\mathrm{r}}-1\right) \omega^{4} R^{3}},
$$

where $\frac{c}{\omega}=\frac{\lambda}{2 \pi}$, so

$$
x_{0}=\frac{3\left(\varepsilon_{\mathrm{r}}+2\right) \lambda^{4}}{2(2 \pi)^{4}\left(\varepsilon_{\mathrm{r}}-1\right) R^{3}}=2.885 \mathrm{~mm} .
$$

We can write the quadratic equation in this way:

$$
\xi^{2}+x_{0} \xi-a^{2}=0
$$

and its positive root is

$$
\xi=\frac{\sqrt{x_{0}^{2}+4 a^{2}}-x_{0}}{2} \approx \frac{a^{2}}{x_{0}}=139 \mathrm{~nm} .
$$

